

NOVIMOVE project

- EU funded research and innovation project
- Collaboration of 21 partners from 6 european countries

The partners are: Universities Knowledge institutes

System developpers Logistics operators

Port Authorities

- Goal = to increase competitivity of inland waterborne transport in front of road and rail
- By addressing inefficiencies in seaport and hinterland logistics through innovations

NOVIMOVE project. Innovations

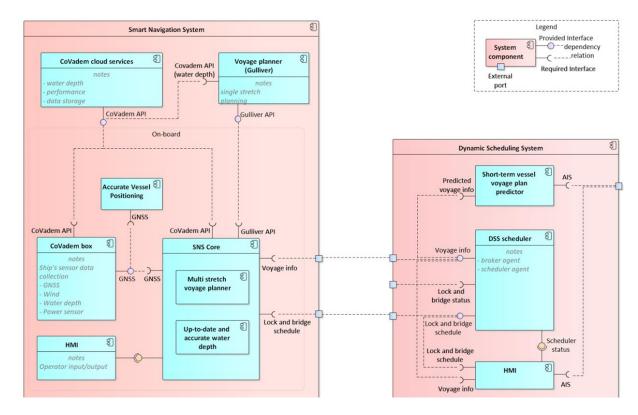
Cargo reconstruction

→ raise container load factors

Mobile terminals

- → avoid long waiting times in ports
- New climate-resilent ships designs
- Smart navigation system

- → with real-time water depth data
- Dynamic scheduling system
- → better corridor management



SRNS – Smart River Navigation System

- Two subsystems:
- SNS Smart Navigation System
 - Goal to optimise the operation of vessels
 - Reduce fuel consumption
 - Increase cargo load
 - Minimise waiting times at locks & bridges
- DSS Dynamic Scheduling System
 - Goal to provide an optimized scheduling locks & bridges
 - Reduced waiting times
 - Reliable journey plans
- Connected + Interfaces HMI

Human Machine Interface

SNS – Smart Navigation System

- River Depth info up-to-date
 - → Covadem Box + Covadem Cloud services
- Accurate Vessel Positioning
 - → GNSS (GPS or Galileo) + EGNOS + INS
- Voyage planner
 - → Gulliver + Optimisation Algorithm

DSS- Dynamic Scheduling System

→ Use of intelligent agents + corridor models

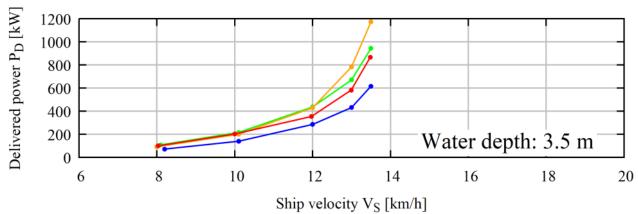
One scheduler → computationally demanding → Not quick

- → divide IW network into smaller sections ← corridor models
- →each section → one scheduller agent ← intelligent scheduler agents

→ Use of open standards and protocols

→Integration and operatibility with other systems and services

Inland ship design until 2018

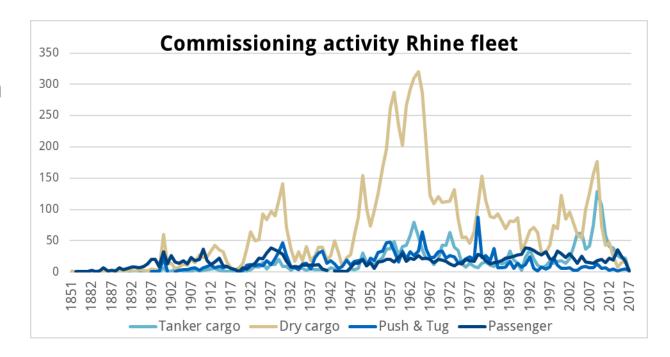

Bestimmung des effektiven Propellerzustroms für die Binnenschifffahrt Project: 97.357/2015

- Size limitations
 - Waterways, locks
 - Regulations
- CAPEX-oriented optimisation
 - Maximising capacity
 - Full Forms, straight surface preferred
- Economies of scale
 - Large Rhine ship (CEMT Va) not large anymore
- Comparison of power demand at trial conditions
 - High water depth
 - Loaded vessels
 - → Large Propellers

- Nevertheless diverse fleet
 - 4 representative hull shapes

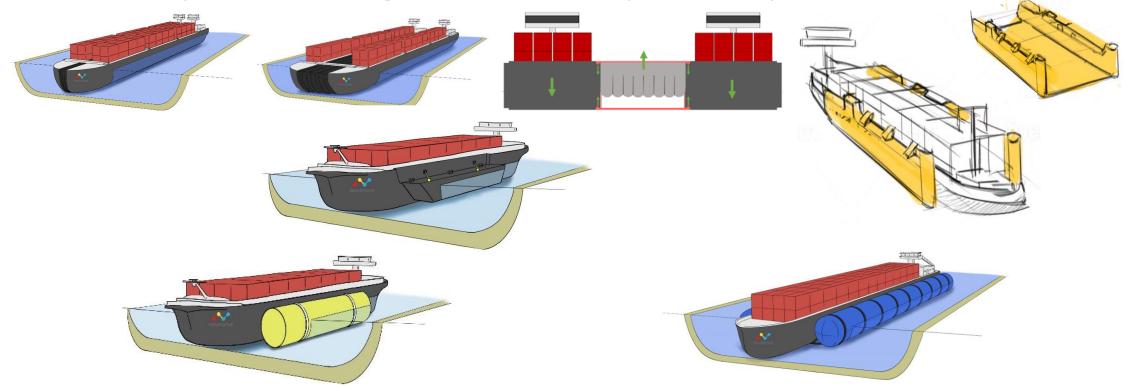
	M2051	M2052	M2053	M2054
# Prop.	1	1	2	2
Ø Prop./m	1.76	1.76	1.60	1.60
Volume /m³	3088	3150	3162	3129
C_B	0.88	0.89	0.90	0.89

- Shallow water case: 3.5 m
- Huge differences in power demand



Measures to increase resilience

- Improved infrastructure
- Dedicated new-build ships
 - Optimised hull shape + propulsion
 - Reduced max draught
 - Tailored hull girders
 - Weight-Watching
 - Smaller ships
- Retrofits
 - Propulsor
 - Aft-ship
 - Added buoyancy



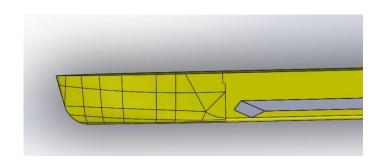
Added buoyancy

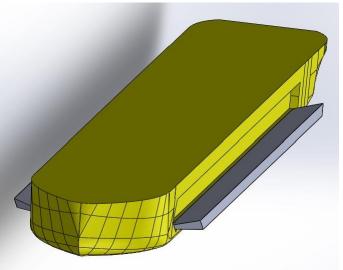
- "Innovative vessels that can adapt their physical properties (buoyancy) and maintain an economic feasible payload in low water conditions."
- First Concepts (w/o existing solutions like coupled convoys):

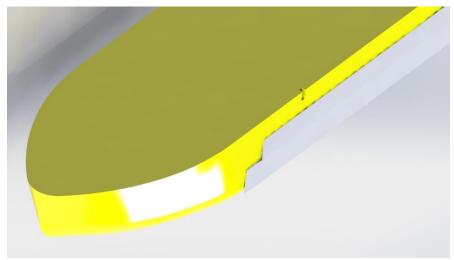
Hydromechanics

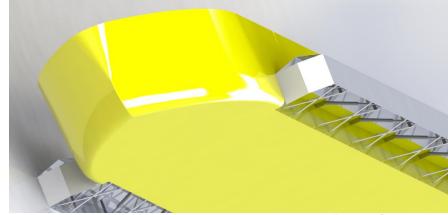
• Quantification of power demand for several variants, ventilation limits...

Draught [m]	Hull only [t]	Boxes [t]	2 PBB [t]	1 PBB [t]
1.2	1262	1719	1765	1699
1.8	1946	2556	2521	2697






WIP to help increase the resilience of IWT in a holistic approach


- Regulatory aspects
- Stability
- Structure & strength
- Operational guidelines
- Kinematics of side-boxes
- New business models

