Situating PSA International – Facts & figures

World's largest port group based on equity-weighted throughput

- 60.1 million TEUs in 2012 (declared Group throughput)
 - Handled > 164,000 TEUs daily worldwide
 - World's single largest container terminal in Singapore: 31.3 million TEUs
- Group revenue of S\$4.50b in 2012
- 29,000 staff globally, with 18,000 direct employs

PSA International – Global footprint

CONFIDENTIAL. All rights reserved. No content can be reproduced without permission.

PSA – 5 terminal locations in Antwerp

Facilities	Current	Final
Container berths	26	29
Quay length (m)	9,245	10,215
Area (ha)	504	602
Max depth at Chart Datum (m)	16	17
Quay cranes	53	66
Designed capacity	12,200	15,300
('000 TEUs)		

PSA Antwerp:

o Member of PSA International

o Acquired by PSA in March 2002

o Largest investment outside Singapore

 Merger of Hesse-Natie & Noord Natie (February 2002)

Terminal portfolio:

 $_{\odot}$ 4 container terminals & 1 multipurpose terminal

o 8.6 M TEU in 2012 (vessel & barge)

81% market share of seagoing volume in Port of Antwerp (2012)
3.000 staff

Port of Antwerp Barge Volumes

Inland Navigation on PSA Terminals in Antwerp – Origin / Destination in % for 2012 - 1.068.339 Containers

Administrative Import Flow on Deepsea Terminals

Almost all discharge information from Seagoing - Vessels is arriving on the PSA Antwerp Deep-sea Terminals via EDI.

EDI : Electronic Data Interchange between computer systems.

EDI is no more then a coded Word document, which can be sent via mail to a dedicated address, which can interpret this message.

NB+UNOA:2+HTS+PSA+130827:1459+HTS2513989' UNH+HTS0+COPINO:D:95B:UN:INT10O' TDT+1+360338+8++HTS+++2331459:146::MAREA'

 All Implementation Guidelines for these international accepted messages are available on the website of APCS, Antwerp Port Community System.
 http://www.portofantwerp.com/apcs/nl/download-category/edi-message-implementation-guides

Edi Messages containing Weights

Different type's of EDI messages

- **COPRAR-DIS** : Electronic **Discharge Manifest** from Shipping Lines
 - Weight is based on info received from freight forwarder in the port of origin.
- BAPLIE FILES : Electronic vessel-plan
 - Weight info depend upon the input in the Terminal Operating System (TOS) in the port of origin. Input over there is done manual or via EDI.
 - Weights known out of <u>booking-references</u> from Shipping Lines : <u>COPARN</u>
 - Weights known out of **load-instructions** from Shipping Lines : **COPRAR-LOAD**

Remarks and questions

- Export Booking References very often contain estimated weights.
- Exact weights for export are only available after stuffing of the containers.
- Export Booking References for several containers \rightarrow Average weight/container.
- Are containers weighed before loading in the port of origin?
- Are weights after weighing corrected in the Terminal Operating Systems ?
- Are weights corrected in the manifest of the Shipping Lines?

Mis-interpretation of the Notion Brutto Weight

Customs Declarations ask for a <u>"brutto"</u> weight of the goods

- Custom documents are always mentioning <u>"brutto"</u> weight, meaning the netto weight of the goods plus their packaging, without the weight of the container.
- For the clearance of the goods it is important this <u>"brutto"</u> weight has to be declared to the customs without the weight of the container. This is done again in an EDI-message called **CUSCAR**, which finds his origin in the manifest. (**Cus**toms **Car**go Manifest)
- This <u>"brutto"</u> weight, without container weight, very often is also mentioned on the import manifest from the Shipping Lines.

Manual input in TOS-systems causes errors because people are thinking, by reading the word <u>" brutto"</u>, the container-weights are included.

Weights used by Terminal Operators

Terminal and Barge Operators receive Load-instructions, normally containing also the weights of the containers.

- These weights are used by the captains of the barges as input for their stability calculations.
 - Weight info is received pending the organizer of the transport:
 - Carrier haulage: <u>Shipping Line</u> is responsible for transport.
 - Merchant haulage: <u>Receiver</u> is responsible for transport.
 - Weight is thus received from Shipping Line or Receiver.
- No control is being effected on differences between the weight on the discharge manifest from the Shipping Lines and the weight on the load instruction from Receivers.

Weight on load-instruction is finally used for Stability Calculations.

Wheigts used by Terminal Operators

Terminal Operators have no control on incorrect weights in their Terminal Operating System.

- As weight info is coming in per different channels, how does the Terminal Operator knows the obtained info is correct?
- Is it the Terminal Operators responsibility to have and to provide the logistic chain the exact weight of the containers?
- Actual problem: Are Terminal Operations responsible for overloading rail, truck and barge transports?
- Will Terminal Operators be held responsible for the use of incorrect weights during stability calculations for barges?

Is there therefore a need to weigh all containers on the terminals?

Weighing of Containers on Terminals

There is only one method, covering all modes of transport : weighing <u>during positioning</u> the containers on the yard.

- Weighing containers in Gantry Cranes on waterside don't offer a solution:
 - For discharge moves, only vessel and barge modus are covered.
 - For load moves, weigh info is arriving too late.
- Weigh Bridges on Gate-in only cover truck modus.
- Weigh Bridges inside the terminals slow down the operational processes
- In case weighing on Terminals should become reality, PSA in Antwerp, at this moment, should invest in weigh-installations into all terminal handling machines, in total approximate 275 pieces.
- Weigh installations should be build into Reach-stackers, in Rail Mounted Gantry's or Rubber Tired Gantry's, and also in every Straddle Carrier, worldwide.

The Influence of Weighing on the Terminal Operating System

- Containers are planned on the yard as per weight-class, preannounced in the booking reference.
- As containers are weighed during positioning, the pre-planned position on the yard could change into a total new position.
 - \rightarrow Could cause operational delay in positioning of the containers.
- TOS should be able to correct the announced weights.
- Who should be informed about the new weights?
 - Import: Receiver via Shipping Lines
 - Export: Shipping Lines

Introducing WAC: Weight Adjustment Charges?

PSA's Point Of View

The Use of correct weights is a Worldwide problem.

- Need for coaching the whole logistic chain.
- Promote the use of EDI-messaging.
- Who has a benefit in weighing all containers
 - Shipping Lines believe in a possibility to load 6% extra cargo
 - Barge companies have more certainty in stability calculations.
 - Truck and rail transports will not be overloaded,
- Is there a need for worldwide regulation on weighing and on worldwide procedures, e.g. only weighing export containers on every terminal?

IF SO: PSA Antwerp is willing to invest in weigh installations

 However costs for investment, maintenance and reporting should be possible to recount from involved parties.

Communication between barges and Terminals

August 2012 IDVV starts up a project to ameliorate the communication between barges and Visiting Terminals

IDVV: Impuls Dynamisch Verkeersmanagement Vaarwegen

- Origin of the project:
 - Barges didn't take the yard-positions on the terminals into account while making their load-plan, causing lots of shifting.
 - Therefore most of the Terminals are not always willing to load according to the requested load-plan, if to many yard-shifting is involved.

Communication between barges and Terminals

- Partners involved in the project
 - Nefkens Advies
 - Bureau Telematica Binnenvaart
 - DP World Germersheim (Inland Terminal and Barge Operator)
 - Authena (IT-provider for Stability Calculations on board of the barges)
 - PSA Antwerp : Terminal Operator

August 2013, project has been finalized, using standards out of the Shipping Industry.

- Result
 - Containers now are loaded in a sequence causing minimum of shifting on the terminal yard and guaranteeing an optimal stability on board of the barges.

Communication between barges and Terminals

COMMUNICATION via EDI Messages:

- NOMENCLATURE Stowage Positions : agreement on a standard.
- NOMENCLATURE Terminals: Using the 5 digit-BIC Codes.
- BAPLIES (electronic bay-plans)
- MOVINS (electronic stowing instruction)
 - Barge can send desired load-plan to the terminal, with or without container-numbers.

TOS from Terminal Operator and Stability Calculator on board of the barges can communicate to each other via EDI. Shifting on the yard is diminished in a significant way. Interaction still needs follow-up by vessel / barge planner

Communication Chart Flow

LOADPLAN

LOADING PLAN										9	2					
MARAJO - 359965										V	ersion 7.0					
								02								
06					WOR-ANR TRLU 646149 DV 8 198815/1	[0]E NDE -/ 3.7 GATU 7 13461 '6" DV 16B 16181	NR E WOF 2.2 9 4 8'6" 68 198	R-ANR []]E CU 3.8 5076 9 DV 8'6" 3809/108	WOR-AN CPSU 403816 DV 198811	4.0 2 8'6" /120			WOR-ANR [1]F FSCU 11.0 939300 0 [9]DV 9'6" 105A01/020			
04			WOR-AN CPSU 406162 DV 198801	4.0 4.0 8'6" /02B		нок -/ ніхи 30153 ру 16160	NR 2.3 1 0 8'6" 20									
02						NOK -/ TCKU 28073 DV 16181	NR 2.3 2 7 8'6"		HLXU 2.4 111375 0 DV 8'6"	NOR-ANR E 100 2.4 109454 1 DV 8'6"	WOR-ANR 4 HLXU 3 446204 0 DV 8 202807/08	.10 .8 6" 38			WOR-ANR 10F OOLU 16.2 856959 9 DV 9'6" 157403/040	
01						10181 10181	NR 2.2 5 0 8'6"		NOR-ANR E HLXU 2.4 127116 4 DV 8'6"	100 - ANR E 100 2.4 122818 9 DV 8'6"	WOR-ANR HLXU 4 517229 9 DV 8' 202809/10	.0 .0 6"			WOR-ANR [1]F OOLU 16.7 847957 7 DV 9'6" 150A15/168	
03						NOK -/ FCTU 47199 DV 10181	NR 2.2 7 0 8'6"							NOR - AI HLXU 305630	17.7 8'6"	
05					WOR - ANR HLXU 537010 DV 8 198803/(20)E NOR -/ 3.7 CLHU 2 38165 '6" DV 04B 16181	NR E WOF 2.2 4 0 462 8'6" 19	ANR []]E 40 3.6 2688 5 20 8'6" 3801/020	WOR -AN TCLU 413990 DV 198807	R [10]E 3.7 2 8'6" /080		\vee	WOR-ANR [1]F HLXU 12.3 802604 5 720V 9'6" 211403/040			
[33	31	29	27	25	23	21 19	17	15	13	11	09 0	7 0	5 0	3 0'	1
[32	3	0 2	8 2	26 24	22	20	18 1	6 14	4 12	10	08	06	04	02	

CONFIDENTIAL. All rights reserved. No content can be reproduced without permission.

PSA ANTWERP

THANK YOU

Marc Stefanoff Manager Central Barge Planning PSA Antwerp

Noordzee Terminal Haven 913 | Scheldelaan 601| 2040 Antwerpen | Belgium www.psa-antwerp.be | marc.stefanoff@psaantwerp.be Tel : + 32 3 560 45 71 | Mobile : + 32 475 89 89 75

CONFIDENTIAL. All rights reserved. No content can be reproduced without permission.